miércoles, 31 de agosto de 2011

Densidad

SustanciaDensidad media
(en kg/m3)
Aceite920
Acero7850
Agua destilada a 4 °C1000
Agua de mar1027
Aire1,2
Aerogel1-2
Alcohol780
Magnesio1740
Aluminio2700
Carbono2260
Caucho950
Cobre8960
Cuerpo humano950
Diamante1320
Gasolina680
Helio0,18
Hielo980
Hierro7874
Hormigón armado2400-2500
Madera600 - 900
Mercurio13580
Oro19300
Wolframio19250
Uranio19050
Tántalo16650
Torio11724
Estaño7310
Piedra pómez700
Plata10490
Osmio22610
Iridio22560
Platino21450
Plomo11340
Poliuretano40
Sangre1060 - 1088
Tierra (planeta)5515
Vidrio2500
En física y química, la densidad o masa específica (símbolo ρ) es una magnitud escalar referida a la cantidad de masa contenida en un determinado volumen de una sustancia.
Ejemplo: un objeto pequeño y pesado, como una piedra de granito o un trozo de plomo, es más denso que un objeto grande y liviano hecho de corcho o de espuma de poliuretano.

 

 Historia

Según un cuento conocido, a Arquímedes le dieron la tarea de determinar si el orfebre de Hierón II de Siracusa desfalcaba el oro durante la fabricación de una corona dedicada a los dioses, y si además lo sustituía por otro metal más barato (proceso conocido como aleación).[1]
Arquímedes sabía que la corona, de forma irregular, podría ser aplastada o fundida en un cubo cuyo volumen se puede calcular fácilmente comparado con la masa. Pero el rey no estaba de acuerdo con estos métodos, pues habrían supuesto la destrucción de la corona.
Desconcertado, Arquímedes se dio un relajante baño de inmersión, y observando la subida del agua caliente cuando él entraba en ella, descubrió que podía calcular el volumen de la corona de oro mediante el desplazamiento del agua. Supuestamente, al hacer este descubrimiento salió corriendo desnudo por las calles gritando: "¡Eureka! ¡Eureka!" (Εύρηκα! en griego, que significa: "Lo encontré"). Como resultado, el término "Eureka" entró en el lenguaje común, y se utiliza hoy para indicar un momento de iluminación.
La historia apareció por primera vez en forma escrita en De Architectura de Vitrubio, dos siglos después de que supuestamente tuviese lugar.[2] Sin embargo, algunos estudiosos han dudado de la veracidad de este relato, diciendo (entre otras cosas) que el método habría exigido medidas exactas que habrían sido difíciles de hacer en ese momento.[3] [4]

 Densidad

La densidad o densidad absoluta es la magnitud que expresa la relación entre la masa y el volumen de un cuerpo. Su unidad en el Sistema Internacional es el kilogramo por metro cúbico (kg/m3), aunque frecuentemente se expresa en g/cm3. La densidad es una magnitud intensiva
\rho = \frac {m}{V}
donde ρ es la densidad, m es la masa y V es el volumen del determinado cuerpo.

 Densidad relativa

Artículo principal: Densidad relativa
La densidad relativa de una sustancia es la relación existente entre su densidad y la de otra sustancia de referencia; en consecuencia, es una magnitud adimensional (sin unidades)
\rho_r = \frac {\rho}{\rho_0}
donde ρr es la densidad relativa, ρ es la densidad de la sustancia, y ρ0 es la densidad de referencia o absoluta.
Para los líquidos y los sólidos, la densidad de referencia habitual es la del agua líquida a la presión de 1 atm y la temperatura de 4 °C. En esas condiciones, la densidad absoluta del agua destilada es de 1000 kg/m3, es decir, 1 kg/L.
Para los gases, la densidad de referencia habitual es la del aire a la presión de 1 atm y la temperatura de 0 °C.

 Unidades de densidad

Unidades de densidad en el Sistema Internacional de Unidades (SI):
R = 0,082 \ \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}
Unidades usadas en el Sistema Anglosajón de Unidades:

 Densidad media y puntual

Para un sistema homogéneo, la fórmula masa/volumen puede aplicarse en cualquier región del sistema obteniendo siempre el mismo resultado.
Sin embargo, un sistema heterogéneo no presenta la misma densidad en partes diferentes. En este caso, hay que medir la "densidad media", dividiendo la masa del objeto por su volumen o la "densidad puntual" que será distinta en cada punto, posición o porción infinitesimal del sistema, y que vendrá definida por:
\rho = 
\lim_{V \to 0} \frac {m}{V} =
\frac {d m}{d V}

 Densidad aparente y densidad real

La densidad aparente es una magnitud aplicada en materiales porosos como el suelo, los cuales forman cuerpos heterogéneos con intersticios de aire u otra sustancia normalmente más ligera, de forma que la densidad total del cuerpo es menor que la densidad del material poroso si se compactase.
En el caso de un material mezclado con aire se tiene:
\rho_{ap} = \frac {m_{ap}}{V_{ap}} = \frac {m_r + m_{aire}}{V_r + V_{aire}}
La densidad aparente de un material no es una propiedad intrínseca del material y depende de su compactación.
La Densidad aparente del suelo (Da) se obtiene secando una muestra de suelo de un volumen conocido a 105 °C hasta peso constante.
Da = {W_{SS}\over V_S}
Donde:
WSS: Peso de suelo secado a 105 °C hasta peso constante.
VS: Volumen original de la muestra de suelo.
Se debe considerar que para muestras de suelo que varíen su volumen al momento del secado, como suelos con alta concentración de arcillas 2:1, se debe expresar el contenido de agua que poseía la muestra al momento de tomar el volumen.

 Medición de densidad

La densidad puede obtenerse de forma indirecta y de forma directa. Para la obtención indirecta de la densidad, se miden la masa y el volumen por separado y posteriormente se calcula la densidad. La masa se mide habitualmente con una balanza, mientras que el volumen puede medirse determinando la forma del objeto y midiendo las dimensiones apropiadas o mediante el desplazamiento de un líquido, entre otros métodos.
Entre los instrumentos más comunes para la medida de densidades tenemos:
Otra posibilidad para determinar las densidades de líquidos y gases es utilizar un instrumento digital basado en el principio del tubo en U oscilante.[cita requerida]

Cambios de densidad

En general, la densidad de una sustancia varía cuando cambia la presión o la temperatura.
  • Cuando aumenta la presión, la densidad de cualquier material estable también aumenta.
  • Como regla general, al aumentar la temperatura, la densidad disminuye (si la presión permanece constante). Sin embargo, existen notables excepciones a esta regla. Por ejemplo, la densidad del agua crece entre el punto de fusión (a 0 °C) y los 4 °C; algo similar ocurre con el silicio a bajas temperaturas.[cita requerida]
El efecto de la temperatura y la presión en los sólidos y líquidos es muy pequeño, por lo que típicamente la compresibilidad de un líquido o sólido es de 10–6 bar–1 (1 bar=0,1 MPa) y el coeficiente de dilatación térmica es de 10–5 K–1.
Por otro lado, la densidad de los gases es fuertemente afectada por la presión y la temperatura. La ley de los gases ideales describe matemáticamente la relación entre estas tres magnitudes:
\rho = \frac {p\,M}{R\,T}
donde R\, es la constante universal de los gases ideales, p\, es la presión del gas, M\, su masa molar y T\, la temperatura absoluta.
Eso significa que un gas ideal a 300 K (27 °C) y 1 atm duplicará su densidad si se aumenta la presión a 2 atm manteniendo la temperatura constante o, alternativamente, se reduce su temperatura a 150 K manteniendo la presión constante.

No hay comentarios:

Publicar un comentario